An alternating direction method for finding Dantzig selectors
نویسندگان
چکیده
منابع مشابه
An alternating direction method for finding Dantzig selectors
In this paper, we study the alternating direction method for finding the Dantzig selectors, which are first introduced in [8]. In particular, at each iteration we apply the nonmonotone gradient method proposed in [17] to approximately solve one subproblem of this method. We compare our approach with a first-order method proposed in [3]. The computational results show that our approach usually o...
متن کاملAn Alternating Direction Implicit Method for Modeling of Fluid Flow
This research includes of the numerical modeling of fluids in two-dimensional cavity. The cavity flow is an important theoretical problem. In this research, modeling was carried out based on an alternating direction implicit via Vorticity-Stream function formulation. It evaluates different Reynolds numbers and grid sizes. Therefore, for the flow field analysis and prove of the ability of the sc...
متن کاملAn Alternating Direction Method
combination of a's yields the numerical coefficient for that combination. For example, in the summation for Su given in Table 2, 1/ao4 has as the ai*-1aB_*+i coefficient ai3a8 which, in turn, has the numerical coefficient 11. The ai2a3a6 combination has 2 ! X 1 ! X 1 ! as the product of the factorials of the exponents. If 11 X 3 ! X 1 ! is divided by 2 ! X 1 ! X 1 !, the result is 33 which is t...
متن کاملAn inexact alternating direction method with SQP regularization for the structured variational inequalities
In this paper, we propose an inexact alternating direction method with square quadratic proximal (SQP) regularization for the structured variational inequalities. The predictor is obtained via solving SQP system approximately under significantly relaxed accuracy criterion and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...
متن کاملAn inertial alternating direction method of multipliers
In the context of convex optimization problems in Hilbert spaces, we induce inertial effects into the classical ADMM numerical scheme and obtain in this way so-called inertial ADMM algorithms, the convergence properties of which we investigate into detail. To this aim we make use of the inertial version of the DouglasRachford splitting method for monotone inclusion problems recently introduced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2012
ISSN: 0167-9473
DOI: 10.1016/j.csda.2012.04.019